Solve the simultaneous equations: 2x + y = 12; x - y = 6

We add the two equations together (left-hand sides and right-hand sides separately). By doing this we get: 2x + y + (x - y) = 12 + 6. By rearranging and simplifying: 3x = 18.If we divide both sides by 3 we get: x = 6.By substituting the value of x into the second equation we get: 6 - y = 6 which makes y = 0.The solution is x = 6 and y = 0.

RD
Answered by Rebeka D. Maths tutor

6317 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (3x^2 + 2)(2x + 5) – 6x(x^2 – 3)


The functions f and g are such that f(x)=5x+2 and g(x)=-x-4. a) Find fg(x). b) Find ff(x). c) Solve fg(x) = ff(x).


How do I make x the subject of the formula?


How do I work out probability when a random choice is repeated?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning