Solve the simultaneous equations: 2x + y = 12; x - y = 6

We add the two equations together (left-hand sides and right-hand sides separately). By doing this we get: 2x + y + (x - y) = 12 + 6. By rearranging and simplifying: 3x = 18.If we divide both sides by 3 we get: x = 6.By substituting the value of x into the second equation we get: 6 - y = 6 which makes y = 0.The solution is x = 6 and y = 0.

RD
Answered by Rebeka D. Maths tutor

5340 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve this question


The line L passes through the points (-2,3) and (6,9). How do I find the equation of the line that is parallel to L and passes through the point (5,-1)?


ABCDEFGH is a cuboid. AB=5.6 cm CH=7.2cm. Angle BCA=44degrees. Find the size of the angle between AH and the plane ABCD giving your answer correct to one dp.


How to solve the following for x: (2x+3)/(x-4) - (2x-8)(2x+1) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences