Solve the simultaneous equations: 2x + y = 12; x - y = 6

We add the two equations together (left-hand sides and right-hand sides separately). By doing this we get: 2x + y + (x - y) = 12 + 6. By rearranging and simplifying: 3x = 18.If we divide both sides by 3 we get: x = 6.By substituting the value of x into the second equation we get: 6 - y = 6 which makes y = 0.The solution is x = 6 and y = 0.

RD
Answered by Rebeka D. Maths tutor

5393 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

50 people ate a snack , some had apples some had biscuits the rest had banana. 21 people were male the rest female. 6 out of 8 people who had apples were female. 18 people had biscuits. 9 females had bananas. How many males had biscuits?


How do you solve an equation like: 5/(x+2) + 3/(x-3) = 2?


find the equation of the tangent to the curve y=2x^3+3 at the point where x= -2


Rearrange the equation y=3x+2 to make x the subject.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences