Prove that the square of an odd number is always 1 more than a multiple of 4

(2x-1)2 = 4x2- 4x + 1= 4(x2-x)+1The part of the expression which is: 4(x2-x) indicates that the value is a multiple of 4. The number 1 is then added which means that the statement 'the square of an odd number is always 1 more than a multiple of 4' is correct.

GP
Answered by Gokul P. Maths tutor

3328 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If 4x = 9y, and 2x + 5y = 95. What is the value of y^2 - x?


Please explain how to multiply two exponential expressions


Evaluate 5/(x−1)+2/(x+4)


Expand and simplify: 5(x +y) + 3(4x-2y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning