Maths A Level: "Sketch the curve of the function f(x) = 2x^3 - 2x - 12 and show that the equation f(x)=0 has one root; calculate the root."

Consider the curve y = 2x^3 - 2x - 12.1) y-intercept. When x=0, y= -12 3) when x tends to infinity...y tends to infinity and when x tends to negative infinity...y tends to negative infinity 4) stationary points (i.e. where gradient of curve=0)). dy/dx=6x^2 - 2. At a given stationary point, dy/dx=0. Solve quadratic equation to conclude that stationary points exist at x values +/- sqrt (1/3). Determine that the y values of both stationary points are negative. 5) sketch the curve with what you know from above. Because the curve is a cubic and its two stationary points lie below the xAxis, it is evident that the curve crosses the xAxis at only one point - there is only one root to f(x)=0. 6) you know from your sketch that the root is greater than + sqrt (1/3). Calculate f(1): f(1) is negative, so the root is greater than f(1) (refer back to the sketch). So calculate f(2): it turns out that f(2)=0 so x=2 is the root of f(x)=0.

JI
Answered by Joseph I. Maths tutor

2645 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Amber earns £7 for each hour she works from Monday to Friday. She earns £10 for each hour she works on Saturday. One week Amber worked for 4 hours on Saturday. That week she earned a total of £180. How many hours did Amber work that week?


Simplify 2^11 x 8


How do you convert a recurring decimal in to a fraction?


For any given journey, ABC Taxis charge customers a base fare of £5 plus 80p per mile. XYZ Taxis charge a base fare of £3 plus £1.20 per mile. Find the number of miles, x, that must be traveled in order for ABC taxis to be the cheaper journey option.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences