Form the differential equation representing the family of curves x = my , where, m is arbitrary constant.

Differentiating the above equation with respet to y:dx/dy = m;Substituting the value of m in the given form:x = (dx/dy) y i.e. the solution is(dx/dy) y - x = 0

PS
Answered by Piyush S. Maths tutor

7919 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


Why does differentiation give us the results that it does?


A curve has equation y=x^2 + 2x +5. Find the coordinates of the point at which the gradient is equal to 1.


How do I find a stationary point on the curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning