n is an integer such that 3n + 2 < 14 and 6n/(n^2+5) > 1. Find all possible values of n.

First of all, solving the equation 3n + 2 < 14 to find n. 3n < 14 -2 = 3n < 12. n < 12/3 = n < 4Secondly solve the equation 6n/(n^2+5) > 1 to find n. Collect all terms on one side of the to solve the equation as a quadratic. Therefore, multiplying both sides by (n^2 + 5) will give: 6n > n^2 +5. Then minus both sides by 6n to give n^2 -6n +5 < 0. Solve the quadratic n^2 -6n +5, which gives (n-5)(n-1)<0. Therefore n = 5 and n=1, thus 1<n<5Finally, finding all n that satisfy both equation so the answer is 2 and 3.

KP
Answered by Kai P. Maths tutor

20247 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations x + y = 2 and x^2 + 2y = 12


A farmer has a garden shaped into an isosceles triangle. Its side is 7m. He needs to enclose the perimeter, using copper wires, in order to avoid undesirable incidents. Each meter of copper wire cost 2£. How much does he need to pay to secure his garden?


How would I solve x^2 + 7x + 10 = 0


Solve the simultaneous equations : x^2 + y^2 = 13 and x = y - 5 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning