n is an integer such that 3n + 2 < 14 and 6n/(n^2+5) > 1. Find all possible values of n.

First of all, solving the equation 3n + 2 < 14 to find n. 3n < 14 -2 = 3n < 12. n < 12/3 = n < 4Secondly solve the equation 6n/(n^2+5) > 1 to find n. Collect all terms on one side of the to solve the equation as a quadratic. Therefore, multiplying both sides by (n^2 + 5) will give: 6n > n^2 +5. Then minus both sides by 6n to give n^2 -6n +5 < 0. Solve the quadratic n^2 -6n +5, which gives (n-5)(n-1)<0. Therefore n = 5 and n=1, thus 1<n<5Finally, finding all n that satisfy both equation so the answer is 2 and 3.

KP
Answered by Kai P. Maths tutor

19236 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 720 boys and 700 girls in a school. The probability that a boy chosen at random studies French is 2/3 The probability that a girl chosen at random studies French is 3/5. Work out the number of students in the school who study French.


Draw the line X+Y=3 on the graph from x = -3 to x = 3


Factorise: y = x^2 + 5x + 6


With a bag of 5 blue marbles, 7 green marbles, and 3 red marbles. What is the probability of picking out two blue marbles? Pick them one at a time and do not replace them.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning