n is an integer such that 3n + 2 < 14 and 6n/(n^2+5) > 1. Find all possible values of n.

First of all, solving the equation 3n + 2 < 14 to find n. 3n < 14 -2 = 3n < 12. n < 12/3 = n < 4Secondly solve the equation 6n/(n^2+5) > 1 to find n. Collect all terms on one side of the to solve the equation as a quadratic. Therefore, multiplying both sides by (n^2 + 5) will give: 6n > n^2 +5. Then minus both sides by 6n to give n^2 -6n +5 < 0. Solve the quadratic n^2 -6n +5, which gives (n-5)(n-1)<0. Therefore n = 5 and n=1, thus 1<n<5Finally, finding all n that satisfy both equation so the answer is 2 and 3.

KP
Answered by Kai P. Maths tutor

18571 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation ((2x+3)/(x-4))-((2x-8)/(2x+1)) = 1 to 2 decimal places.


Solve the equation (3x + 2)/(x-1) + 3 = 4


Solve the equation x^2 - 8x + 5 = 0 by completing the square


How to derive the formula for a geometric series sum


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences