Given that cos(x) = 1/4, what is cos(2x)?

cos(2x) = 2cos2(x) - 1 This is the identity. Therefore we can substitute in 2[cos2(x)] to be 2 multiplied by (1/4)2.Therefore cos(2x) = 2(1/4)(1/4) - 1 = 2/16 - 1 = 2/16 - 16/16 =1/8 - 8/8 = -(7/8).Ans. = - 7/8.

BK
Answered by Bhumi K. Maths tutor

9342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would the integral ∫x^2sin2xdx be solved using integration by parts?


How would I go about drawing the graph of f(x) = sin(x)/(e^x) for -π≤x≤2π?


A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning