Where do the lines 2y = 4x + 2 and - 3x + y = 4 intersect?

Rearrange the second equation in the form y = mx + c to get y = 3x + 4. Divide the first equation by 2 to get y = 2x + 1. When the lines intersect, they'll have the same x and y values, hence, set the equations equal to each other to find the x co-ordinate: 2x + 1 = 3x + 4. Collecting like terms gives 1 = x + 4, and then taking the 4 to the other side of the equation gives x = -3. This value is substituted into either equation, allowing you to find the y co-ordinate: (using equation 1) y = 2(-3) + 1, which gives y = -5. Therefore, the two lines intersect at the point (-3,-5).

EJ
Answered by Emma J. Maths tutor

2942 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Anne picks a 4-digit number. The first digit is not zero. The 4-digit number is a multiple of 5. How many different 4-digit numbers could she pick?


If A is divided by B, the result is 5/7. If B is divided by C, the result is 4/5. What is the result of A divided by C ?


Find the equation of the line that passes through ( 5 , -4 ) and (3,8).


The y-intercept of A is 7. A also passes through point (7, 2). (a) Find an equation of A in the form y = mx + c. (b) B is perpendicular to A and also has a y-intercept of 7. Write down the equation for B in the form y = mx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning