Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y - 3x = 13

Start to solve by substitution: eqn 1 x^2 + y^2 = 25eqn 2 y - 3x = 13 => y = 3x + 13Substitute eqn 2 into 1: x^2 + (3x +13)^2 = 25expand and simplify the equation ...5x^2 + 39x + 72 = 0Factorise the equation: (5x+24)(x+3) = 05x = -24 => x = -24/5x = -3Substitute back into equation 2 to find equivalent y values: x = -3 and y = 4, x = -24/5 and y = -7/5

RR
Answered by Rosita R. Maths tutor

2788 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the difference between the squares of two consecutive odd numbers is a multiple of 8.


Jo has the following 9 coins in her purse: 10p, 2p, 2p, 50p, 10p, 1p, 20p, 2p, 2p. Work out the median, mean, mode and range.


Solve the next innequation: 12x-4>4x+12


From June 2015 Edexcel paper: Solve 7x + 8 = 2x – 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning