Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y - 3x = 13

Start to solve by substitution: eqn 1 x^2 + y^2 = 25eqn 2 y - 3x = 13 => y = 3x + 13Substitute eqn 2 into 1: x^2 + (3x +13)^2 = 25expand and simplify the equation ...5x^2 + 39x + 72 = 0Factorise the equation: (5x+24)(x+3) = 05x = -24 => x = -24/5x = -3Substitute back into equation 2 to find equivalent y values: x = -3 and y = 4, x = -24/5 and y = -7/5

RR
Answered by Rosita R. Maths tutor

2717 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of line L1 is y=3x-5. The equation of line L2 is 2y-6x+5=0. Show that these two lines are parallel.


If 3(x+2) = 4, what is x?


Expand (x+6)(x-3)


Solve: 2x^2 + x = x^2 - 4(x+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences