Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y - 3x = 13

Start to solve by substitution: eqn 1 x^2 + y^2 = 25eqn 2 y - 3x = 13 => y = 3x + 13Substitute eqn 2 into 1: x^2 + (3x +13)^2 = 25expand and simplify the equation ...5x^2 + 39x + 72 = 0Factorise the equation: (5x+24)(x+3) = 05x = -24 => x = -24/5x = -3Substitute back into equation 2 to find equivalent y values: x = -3 and y = 4, x = -24/5 and y = -7/5

RR
Answered by Rosita R. Maths tutor

3002 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write x^2 - 6x +7 in the form (x+a)^2 +b


How do I expand (2x+5)(9x-2)?


How would you solve the simultaneous equations y=x+1 and y=4x-2


Tom tosses a coin. Every toss lands on either heads or tails. The coin lands on heads two thirds of the first 24 games. The coin then lands on heads the next 6 games. For all 30 tosses, work out the ratio heads:tails. Give the answer in the simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning