Integrate xsin(x) by parts between the limits of -pi/2 and +pi/2

Let u = x and dv/dx = sin(x),

By using the general expression of:

integral(u multiply dv/dx)dx = [u multiply v] - integral(v multiply du/dx)dx, and by realising that:

du/dx = 1, and v = -cos(x), we can deduce that the expression for integral(xsin(x)) becomes:

[-xcos(x)] - integral(-cos(x))dx, by putting the limits in, we can say that [-xcos(x)] is 0 because cos(-pi/2) = cos(pi/2) = 0. We can also say that, -integral(-cos(x))dx = [sin(x)], and by puitting the limits in this becomes [sin(pi/2) - sin(-pi/2)] = 2.

Therefore: integral(xsin(x))dx between -pi/2 and pi/2 = 2.

MB
Answered by Matthew B. Maths tutor

3242 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).


Express 6sin(2x)+5cos(x) in the form Rsin(x+a) (0degrees<x<90degrees)


A machine is used to manufacture custom spoilers for two types of sports car( Car A and Car B0. Each day, in a random order, n are produced for Car A and m for Car B. What is the probability that the m spoilers for Car B are produced consecutively?


Why is (x^3 - 7x^2 +13x - 6) divisible with (x-2)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences