Differentiate Sin^2(X) with respect to X

'With respect to X' means we will be differentiating all the X parts (To put it simply). First we show that the differential of Sin(X) is Cos(X), we can show this graphically using the whiteboard. Then we should know from previous lessons that the differential of X^2 is 2X (We can show this with the formal definition of a differential using diagrams as aids). We then combine these two rules using a substitution for Sin(X) = U, still differentiating with respect to X (not U). Several lines of working and explaining will lead to the answer of 2Cos(x)Sin(x).

TH
Answered by Thomas H. Maths tutor

14367 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the "complete the square" method, solve the following x^2 +4x - 21 =0


Solve the equation 8x^6 + 7x^3 -1 = 0


A particle is moving in the with acceleration (2t - 3) ms^-2 and initial velocity 2ms^-1. Find the distance travelled when the velocity has reached 12ms^-1.


solve sin(2x)=0.5. between 0<x<2pi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning