Prove that the square of an odd number is always 1 more than a multiple of 4

We start off by defining what an odd number is. We take a general letter, say the letter n, to represent any number. If we multiple it by 2 we are sure no matter what number we enter as n the answer will always be an even number. As you can see in the question we want to deal with odd numbers so we add a one to '2n' and we will always get an odd number. As giving in the question we will have to square '2n+1'.
We expand the brackets like so and be careful with the multiplication. The result we get from this is '4n2 + 4n +1' and we look back at the question and remember what it is asking us. To prove that part of this is a multiple of 4 we divide '4n2 +4n' by 4 and pull it out of the bracket we make to get altogether '4(n2 +n) +1'. Now you can see that we have solved the problem as n can be any number being multiplied by 4 then a 1 is being added.

TM
Answered by Tanmayi M. Maths tutor

3431 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that the following 2 lines are parallel: l1: 3y=15x+17 l2: 7y+5=35x


Solve the following simultaneous equations 7x - 6y =38 and 3x + 9y =-3


What are the different methods of solving quadratic equations?


Make X the subject of the equation (9x-7)/3 = 8y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning