∫ (ln(x)/(x*(1+ln(x))^2) dx

use u = 1+ln(x) as the substitution du/dx = 1/xdx = x du ∫ (ln(x)/(x*(1+ln(x))^2) dx = ∫ ((u-1)x/ x(u^2)) du = ∫ (u-1)/(u^2) du

JB
Answered by Jack B. Maths tutor

7436 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate cos^2(x)


Find the derivative (dy/dx) of the curve equation x^2 -y^2 +y = 1.


integrate cos^2(x)*sin(x)


A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences