How do I maximise/minimise a given function f(x)?

To find an extreme point of a function you must first take the derivative of f(x) with respect to x.
As the function will peak/trough at the extreme point, the gradient at this point will be equal to 0 and therefore f'(x) = 0 must be solved in order to find the value of x that maximise/minimise this function.
To check if the function is a minimum or a maximum you must take second order derivatives; f''(x).if f''(x) is negative, the found x value maximises the functionif f''(x) is positive, the found x value minimises the function


Answered by Maths tutor

3766 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Express 9x+11/(2x+3)(x-1) as partial fractions and (b) find the integral of 9x+11/(2x+3)(x-1) with respect to x


Find the set of values for x for which x^2 - 9x <= 36


A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


Why is the derivative of ln(x) equal to 1/x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning