How do I maximise/minimise a given function f(x)?

To find an extreme point of a function you must first take the derivative of f(x) with respect to x.
As the function will peak/trough at the extreme point, the gradient at this point will be equal to 0 and therefore f'(x) = 0 must be solved in order to find the value of x that maximise/minimise this function.
To check if the function is a minimum or a maximum you must take second order derivatives; f''(x).if f''(x) is negative, the found x value maximises the functionif f''(x) is positive, the found x value minimises the function


Answered by Maths tutor

3516 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.


Integrate by parts the following function: ln(x)/x^3


a typical question would be a setof parametric equations y(t) and x(t), asking you to find dy/dx and then the tangent/normal to the curve at a certain point (ie t = 2)


given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning