f(x) = x^x, find f'(3).

Therefore, y = xxcan then natural log both sides leaving ln(y) = xln(x) then differentiating both sides wrst to x d/dx(ln(y)=xln(x))we are then left with this expression (dy/dx)(1/y)=ln(x)+1 multiplying up by y leaves us with the expression dy/dx=y(ln(x)+1) can then substitue old expression back into new one and get this dy/dx=(xx)(ln(x)+1) finally subbing in x=3 gives us f'(3)=27(ln(3)+1)

FR
Answered by Frederick R. Maths tutor

2469 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .


Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.


differentiate 2^x


The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences