f(x) = x^x, find f'(3).

Therefore, y = xxcan then natural log both sides leaving ln(y) = xln(x) then differentiating both sides wrst to x d/dx(ln(y)=xln(x))we are then left with this expression (dy/dx)(1/y)=ln(x)+1 multiplying up by y leaves us with the expression dy/dx=y(ln(x)+1) can then substitue old expression back into new one and get this dy/dx=(xx)(ln(x)+1) finally subbing in x=3 gives us f'(3)=27(ln(3)+1)

FR
Answered by Frederick R. Maths tutor

2509 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I deal with parametric equations? x = 4 cos ( t + pi/6), y = 2 sin t, Show that x + y = 2sqrt(3) cos t.


Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)


Solve x^3+2x^2+x=0


Integrate 1/(5-2x) for 3≤x≤4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences