f(x) = x^x, find f'(3).

Therefore, y = xxcan then natural log both sides leaving ln(y) = xln(x) then differentiating both sides wrst to x d/dx(ln(y)=xln(x))we are then left with this expression (dy/dx)(1/y)=ln(x)+1 multiplying up by y leaves us with the expression dy/dx=y(ln(x)+1) can then substitue old expression back into new one and get this dy/dx=(xx)(ln(x)+1) finally subbing in x=3 gives us f'(3)=27(ln(3)+1)

FR
Answered by Frederick R. Maths tutor

2677 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 5^(2x) - 12(5^x) + 35 = 0


Integrate 2x^4 - 4/sqrt(x) + 3 dx


Find the set of values of x for which x(x-4) > 12


Find the exact solution of the following equation: e^(4x-3) = 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning