f(x) = x^x, find f'(3).

Therefore, y = xxcan then natural log both sides leaving ln(y) = xln(x) then differentiating both sides wrst to x d/dx(ln(y)=xln(x))we are then left with this expression (dy/dx)(1/y)=ln(x)+1 multiplying up by y leaves us with the expression dy/dx=y(ln(x)+1) can then substitue old expression back into new one and get this dy/dx=(xx)(ln(x)+1) finally subbing in x=3 gives us f'(3)=27(ln(3)+1)

FR
Answered by Frederick R. Maths tutor

2564 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where do the graphs of y=3x-2 and y=x^2+4x-8 meet?


Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


Find the indefinite integral of 3x - x^(3/2) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning