integral of (tan(x))dx using the substitution u = cos(x)

given u = cos(x), therefore du/dx=-sin(x), as tan(x)=sin(x)/cos(x), can rewrite tan(x)=(-du/dx)/u, therefore integral can become [(-1/u)du], after inegrating you are left with -ln(u)+c, therefore ln(1/u)+c, subbing back in leaves us with ln((1/cos(x)))+c

FR
Answered by Frederick R. Maths tutor

4623 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


The curve C has the parametric equations x=4t+3 and y+ 4t +8 +5/(2t). Find the value of dy/dx at the point on curve C where t=2.


Find the first 4 term of the binomial expansion (2-4x)^5


Expand (1+0.5x)^4, simplifying the coefficients.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning