integral of (tan(x))dx using the substitution u = cos(x)

given u = cos(x), therefore du/dx=-sin(x), as tan(x)=sin(x)/cos(x), can rewrite tan(x)=(-du/dx)/u, therefore integral can become [(-1/u)du], after inegrating you are left with -ln(u)+c, therefore ln(1/u)+c, subbing back in leaves us with ln((1/cos(x)))+c

FR
Answered by Frederick R. Maths tutor

4656 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


Why does 'x' need to be in radians to differentiate 'sin x'?


Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning