How high can you raise a kilogram of sugar with 1 kWh of electrical energy? (To 2 s.f in kilometres)

The first thing to recognise is that the terms 'sugar' and 'electrical' are there to confuse you - the substance raised and the type of form of energy used to raise it are not important to the question.
This is ultimately a question of equating energies, Ep as potential energy of the sugar and Ee the electrical energy used to raise it. We know that the gravitational energy of the sugar after raising it will be equal to 1 kWh, so we look to express this in a unit that is more useful, Joules.
1 kWh is the energy output of 1000 Watts of power for 1 hour (6060 seconds). As 1 Watt is 1 Joule / second, we find that:Ee = (1000)(60)(60) = 3,600,000 J
The potential energy of the sugar after raising it to a height h is: E = m
g*h
We have m = 1kg and g = 9.8 m/s/s .
Therefore with Ep = Ee we have:
3,600,000 = (9.81)*hh = 367.3469... km
To 2 s.f this is rounded to: h = 370 km

AL
Answered by Alexander L. Physics tutor

2902 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A cricket player throws a ball such that it travels 10 meters in 2 seconds at constant acceleration. Calculate the kinetic energy of the ball if it has a mass of 1kg.


What are the properties of electromagnetic waves?


How does heat transfer through convection work?


Describe the energy transfers taking place when a person is running up a hill


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning