How high can you raise a kilogram of sugar with 1 kWh of electrical energy? (To 2 s.f in kilometres)

The first thing to recognise is that the terms 'sugar' and 'electrical' are there to confuse you - the substance raised and the type of form of energy used to raise it are not important to the question.
This is ultimately a question of equating energies, Ep as potential energy of the sugar and Ee the electrical energy used to raise it. We know that the gravitational energy of the sugar after raising it will be equal to 1 kWh, so we look to express this in a unit that is more useful, Joules.
1 kWh is the energy output of 1000 Watts of power for 1 hour (6060 seconds). As 1 Watt is 1 Joule / second, we find that:Ee = (1000)(60)(60) = 3,600,000 J
The potential energy of the sugar after raising it to a height h is: E = m
g*h
We have m = 1kg and g = 9.8 m/s/s .
Therefore with Ep = Ee we have:
3,600,000 = (9.81)*hh = 367.3469... km
To 2 s.f this is rounded to: h = 370 km

AL
Answered by Alexander L. Physics tutor

3224 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Can you explain the difference between a real and a virtual image?


A baby in a bouncer bounces up and down with a period of 1.2s and amplitude of 90mm. Calculate the baby's maximum velocity.


What is the difference between speed and velocity?


What provides the centripetal force on a satellite and what are the factors that determine the size of the centripetal force on the satellite


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning