The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.

Every point on the curve C satisfies the equation. In order to show P lies on C, we need to test if either x- or y-coordinates satisfy the equation. It is easier to subsitute x=2 into the equation.

By doing so, this gives

y = (2)3 - 2 x (2)2 - (2) + 9 

y = 7

As P's y-coordinate is also 7, therefore, P (2, 7) lies on the curve C.

MP
Answered by Minh P. Maths tutor

15337 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the definite integral of 2x^2 + 4x + 1 with a lower limit of 3 and a higher limit of 6?


The point A lies on the curve y=5(x^2)+9x , The tangent to the curve at A is parralel to the line 2y-x=3. Find an equation to this tangent at A.


How do you resolve forces on an object on an angled plane?


Solving a quadratic with ax^2 e.g. 2x^2 - 11x + 12 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning