The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.

Every point on the curve C satisfies the equation. In order to show P lies on C, we need to test if either x- or y-coordinates satisfy the equation. It is easier to subsitute x=2 into the equation.

By doing so, this gives

y = (2)3 - 2 x (2)2 - (2) + 9 

y = 7

As P's y-coordinate is also 7, therefore, P (2, 7) lies on the curve C.

MP
Answered by Minh P. Maths tutor

14833 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2


Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.


A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?


Find the roots of y=x^{2}+2x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning