The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.

Every point on the curve C satisfies the equation. In order to show P lies on C, we need to test if either x- or y-coordinates satisfy the equation. It is easier to subsitute x=2 into the equation.

By doing so, this gives

y = (2)3 - 2 x (2)2 - (2) + 9 

y = 7

As P's y-coordinate is also 7, therefore, P (2, 7) lies on the curve C.

MP
Answered by Minh P. Maths tutor

15018 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the gradient of a line?


What is integration?


If the velocity of a particle is given by t^2+t, then determine the acceleration of the particle when t=4.


Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning