The curve C has equation y = x^3 - 2x^2 - x + 9, x > 0. The point P has coordinates (2, 7). Show that P lies on C.

Every point on the curve C satisfies the equation. In order to show P lies on C, we need to test if either x- or y-coordinates satisfy the equation. It is easier to subsitute x=2 into the equation.

By doing so, this gives

y = (2)3 - 2 x (2)2 - (2) + 9 

y = 7

As P's y-coordinate is also 7, therefore, P (2, 7) lies on the curve C.

MP
Answered by Minh P. Maths tutor

14910 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given df/dx=2x+3 and the graph goes through (1,1), what is the function f?


f(x)=x^3 + x^2 -10x +8 show that (x-1) is a factor of f(x), Factorise f(x) fully , sketch the graph of f(x)


f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning