Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0

The stationary point on the curve is the point on the curve where the gradient is 0. In other words the tangent to the curve at that point is horizontal. The gradient of the curve can be expressed as dy/dx which is the first differential of the curve. dy/dx in effect gives us a formula to calculate the gradient of the curve at any x value. 2x^2+3x+4 differentiates to 4x+3. Since we know at the stationary point the gradient is 0 4x+3 must be equal to 0. Rearranging for x gives us x=-3/4 so the gradient of the curve is 0 at -3/4 and there is only 1 stationary point. To find the y coordinate substitute x=-3/4 into the original equation. y=2(-3/4)^2+3(-3/4)+4=23/8. This curve has 1 stationary point with coordinates (-3/4,23/8)

QZ
Answered by Qais Z. Maths tutor

5204 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the turning points of a curve described by the equation y(x)?


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


Find the coordinates of the centre C and the length of the diameter of a circle with the equation (x-2)^2 + (y+5)^2 = 25


Given that f(x) = 1/x - sqrt(x) + 3. Find f'(1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning