Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0

The stationary point on the curve is the point on the curve where the gradient is 0. In other words the tangent to the curve at that point is horizontal. The gradient of the curve can be expressed as dy/dx which is the first differential of the curve. dy/dx in effect gives us a formula to calculate the gradient of the curve at any x value. 2x^2+3x+4 differentiates to 4x+3. Since we know at the stationary point the gradient is 0 4x+3 must be equal to 0. Rearranging for x gives us x=-3/4 so the gradient of the curve is 0 at -3/4 and there is only 1 stationary point. To find the y coordinate substitute x=-3/4 into the original equation. y=2(-3/4)^2+3(-3/4)+4=23/8. This curve has 1 stationary point with coordinates (-3/4,23/8)

QZ
Answered by Qais Z. Maths tutor

5261 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A pot of water is heated to 100C and then placed in a room at a temperature of 18C. After 5 minutes, the pan temperature falls by 20C. Find the temperature after 10minutes.


How to sketch a cubic function


Using the sum, chain and product rules, differentiate the function f(x) = x^n +x^3 * sin(1/[3x])


The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning