The curve C has equation ye^(-2x) = 2x + y^2. Find dy/dx in terms of x and y.

The curve's equation is presented as an implicit function. Therefore we must use implicit differentiation to solve this problem. To do this, we differentiate both sides of the equation with respect to x, applying the chain rule where a y variable appears, and then rearrange to give dy/dx. The equation given in the question differentiates implicitly to e-2x(dy/dx) - 2ye-2x = 2 + 2y(dy/dx). This can be rearranged to dy/dx = (2 + 2ye-2x )/ (e-2x- 2y)

GW
Answered by Georgia W. Maths tutor

8866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we differentiate y=a^x when 'a' is an non zero real number


At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?


How to sum an arithmetic progression?


What are partial fractions for and how do I find them?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning