y = x^x, find y'

y = xx, by taking logs:ln(y) = ln(xx )By log laws:ln(y) = xln(x)From implicit differentiation; d/dx = y'*d/dy, so:d/dx[ln(y)] = y'*d/dy[ln(y)] = y' * 1/yFrom the product rule; d/dx[xln(x)] = ln(x) * d/dx(x) + x * d/dx[ln(x)], so:d/dx[xln(x)] = ln(x) + 1Since d/dx[ln(y)] = d/dx[xln(x)] then:y' * 1/y = ln(x) + 1, y' = y[ln(x) + 1]y = xxFinally: y' = xx [ln(x) + 1]

SD
Answered by Scott D. Maths tutor

3630 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of x sin(x) dx?


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


How to differentiate 2x^5-4x^3+x^2 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning