y = x^x, find y'

y = xx, by taking logs:ln(y) = ln(xx )By log laws:ln(y) = xln(x)From implicit differentiation; d/dx = y'*d/dy, so:d/dx[ln(y)] = y'*d/dy[ln(y)] = y' * 1/yFrom the product rule; d/dx[xln(x)] = ln(x) * d/dx(x) + x * d/dx[ln(x)], so:d/dx[xln(x)] = ln(x) + 1Since d/dx[ln(y)] = d/dx[xln(x)] then:y' * 1/y = ln(x) + 1, y' = y[ln(x) + 1]y = xxFinally: y' = xx [ln(x) + 1]

SD
Answered by Scott D. Maths tutor

3212 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you factorise a quadratic equation?


Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.


The polynomial p(x) is given: p(x)=x^3+2x^2-5x-6, express p(x) as the product of three linear factors


How to integrate cos^2(x) ? ("cos squared x")


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences