Find the integral of 1/(x-5) with respect to x

This question tests fundamental understanding of integration and checks that the student is not simply memorizing the simple examples for the test. Most students will remember that the integral of 1/x is ln(|x|), however real understanding of the theory is needed to see that the x-5 that replaces the x in the above example makes no difference to the overall rule as all that has been changed is the addition of a constant. The official method to answer this question would be to show the student that this is the reverse of the chain rule of differentiation and that when you differentiate ln(x-5) you would get 1/(x-5) by the chain rule. And as at A-Level, differentiation is taught to be the opposite of integration. Then we can see by comparison that the answer must be ln(|x-5|). However, I like this question as it shows me the level of intuition a student has towards this area of integration. This question can then be expanded into finding the integral of 1/(5x-3) and if the intuition from the previous example holds, the student will see that the 3 can be ignored however the 5 can not and so the answer is 1/5*ln(|5x-3|).

HL
Answered by Harry L. Maths tutor

4592 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the cosine rule and how do I use it?


Solve e^(2x) = 5e^(x) - 6, giving your answers in exact form


In the case of vectors, how do I find the shortest distance between a point and a line?


Differentiate f(x)= x^3 + x^(1/3)-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences