Find the integral of 1/(x-5) with respect to x

This question tests fundamental understanding of integration and checks that the student is not simply memorizing the simple examples for the test. Most students will remember that the integral of 1/x is ln(|x|), however real understanding of the theory is needed to see that the x-5 that replaces the x in the above example makes no difference to the overall rule as all that has been changed is the addition of a constant. The official method to answer this question would be to show the student that this is the reverse of the chain rule of differentiation and that when you differentiate ln(x-5) you would get 1/(x-5) by the chain rule. And as at A-Level, differentiation is taught to be the opposite of integration. Then we can see by comparison that the answer must be ln(|x-5|). However, I like this question as it shows me the level of intuition a student has towards this area of integration. This question can then be expanded into finding the integral of 1/(5x-3) and if the intuition from the previous example holds, the student will see that the 3 can be ignored however the 5 can not and so the answer is 1/5*ln(|5x-3|).

HL
Answered by Harry L. Maths tutor

4390 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A function is defined by f(x)= e^(x^2+4), all real x. Find inverse of f(x) and its domain.


The function f is defined by f(x)= 2/(x-3) + x - 6 . Determine the coordinates of the points where the graph of f intersects the coordinate axes.


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


Expand and simplify (n + 2)^3 − n^3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences