Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2

The equation of the line is y=x3+7x2+1To find the equation for the gradient of the line, we need to differentiateDifferentiating gives us dy/dx = 3x2+14xWe can now find the gradient of the curve at any point, if we know the x co-ordinate at that pointWe want to find the gradient of the curve at x=2, so we put this into our equation for dy/dx3(2)2+14(2)=40so we know the gradient of the curve at x=2 is 40

CR
Answered by Charlotte R. Maths tutor

3824 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


The curve y = 4x^2 + a/x +5 has a stationary point. Find the value of the positive constant 'a' given that the y-coordinate of the stationary point is 32. (OCR C1 2016)


How do you find the integral of 'x sin(2x) dx'?


Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences