Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2

The equation of the line is y=x3+7x2+1To find the equation for the gradient of the line, we need to differentiateDifferentiating gives us dy/dx = 3x2+14xWe can now find the gradient of the curve at any point, if we know the x co-ordinate at that pointWe want to find the gradient of the curve at x=2, so we put this into our equation for dy/dx3(2)2+14(2)=40so we know the gradient of the curve at x=2 is 40

CR
Answered by Charlotte R. Maths tutor

3929 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


Express 5/[(x-1)(3x+2)] as partial fractions.


Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


The curve C has equation y=2x^2 -11x +13. (a) The point P has coordinates (2, – 1) and lies on C. Find the equation of the tangent to C at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences