Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2

The equation of the line is y=x3+7x2+1To find the equation for the gradient of the line, we need to differentiateDifferentiating gives us dy/dx = 3x2+14xWe can now find the gradient of the curve at any point, if we know the x co-ordinate at that pointWe want to find the gradient of the curve at x=2, so we put this into our equation for dy/dx3(2)2+14(2)=40so we know the gradient of the curve at x=2 is 40

CR
Answered by Charlotte R. Maths tutor

4193 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is it that sin^2(x) + cos^2(x) = 1?


Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


What is the integral of 2x^5 - 1/4x^3 - 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning