Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2

The equation of the line is y=x3+7x2+1To find the equation for the gradient of the line, we need to differentiateDifferentiating gives us dy/dx = 3x2+14xWe can now find the gradient of the curve at any point, if we know the x co-ordinate at that pointWe want to find the gradient of the curve at x=2, so we put this into our equation for dy/dx3(2)2+14(2)=40so we know the gradient of the curve at x=2 is 40

CR
Answered by Charlotte R. Maths tutor

3998 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you differentiate ln(x^2+3x+5)?


The gradient of a curve is given by dy/dx = 6sqrt(x) + 2. The curve passes through the point (16, 38). Find the equation of the curve.


Integrate f(x)=lnx


Given that x = ln(sec(2y)) find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences