Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.

This is an integration question.
The limits have been provided.

Firstly find the integral for the first curve
int{x(4-x)}dx
int{4x-x2}dx
2x2-x3/3
Apply the limits x=2,0
[2(2)2-(2)3/3]-[2(0)2-(0)3/3]=
8-8/3=16/3
 

Secondly, find the integral of the second curve
int{(3-x)x2 }dx
int{3x2-x3}dx
x3-x4/4
Apply the limits x=2,0
[(2)3-(2)4/4]-[(0)3-(0)4/4]=
8-16/4=
8-4=4

Subtract the areas to find the area between them
16/3-4=4/3


 

AD
Answered by Anthony D. Maths tutor

3420 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


What is the chain rule and how does it work?


Two lines have equations r_1=(1,-1,2)+a(-1,3,4) and r_2=(c,-4,0)+b(0,3,2). If the lines intersect find c:


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning