Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.

Let u = 3x4 + x
du/dx = 12x3 + 1
y = u5
dy/du = 5u4
Using the chain rule, dy/dx = dy/du x du/dx
= 5u4 (12x3 + 1)
dy/dx = 5(3x4 + x)(12x3 +1)

Answered by Maths tutor

5306 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using partial fractions, find f(x) if f'(x)=5/(2x-1)(x-3)


Express: (x^2 + 5x - 14) / (2x^2 - 4x) as a fraction in it's simplest form.


Find the stationary points on y = x^3 + 3x^2 + 4 and identify whether these are maximum or minimum points.


What is the derivative?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences