Given that y = (3x^4 + x)^5, find dy/dx using the chain rule.

Let u = 3x4 + x
du/dx = 12x3 + 1
y = u5
dy/du = 5u4
Using the chain rule, dy/dx = dy/du x du/dx
= 5u4 (12x3 + 1)
dy/dx = 5(3x4 + x)(12x3 +1)

Answered by Maths tutor

5661 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Core 3: Find all the solutions of 2cos(2x) = 1-2sin(x) in the interval 0<x<360


Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.


what is the integral of ln(x)


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning