Prove that the square of an odd number is always 1 more than a multiple of 4

An odd number can be expressed by the formula "2n + 1" where n stands for any integer. Therefore, the square of any odd number can be expressed as:(2n+1)^2 = (2n+1)(2n+1) = 4n^2 + 4n + 1 = 4(n^2 + n) + 1As 4(n^2 + n) is necessarily a multiple of 4, it is therefore clear that 4(n^2 + n) + 1 is 1 more than a multiple of four. Therefore the square of any odd number is 1 more than a multiple of 4

EB
Answered by Edward B. Maths tutor

3583 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Why is Pythagoras theorem (a^2 + b^2 = c^2) true for every right angle triangle?


simplify c^4 x c^3


z = 3x + 5y, if x = 7 and z = 41, what is 2y?


HIGHER TIER a) Factorise the following equation into two bracket form: 2x^2-5x-12. b)2x^2-5x-12=0. Solve this equation to find the values of x, using your answer to part a). BONUS c) Sketch the function y=2x^2-5x-12, showing any x intercepts


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning