Differentiate sin(2x)/x^2 w.r.t. x

Quotient Rule:d(u/v)/dx = (vu' - uv')/(v2)u = sin(2x) => u' = 2cos(2x)v = x2 => v' = 2x=> (2x2cos(2x) - 2xsin(2x))/(x4)Product Rule:d(uv)/dx = vu' + uv'u = sin(2x) => u' = 2cos(2x)v = 1/x2 = x-2 => v' = -2x-3=> 2x-2cos(2x) - 2x-3sin(2x)

VL
Answered by Vinh L. Maths tutor

9066 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


(i) Prove sin(θ)/cos(θ) + cos(θ)/sin(θ) = 2cosec(2θ) , (ii) draw draph of y = 2cosec(2θ) for 0<θ< 360°, (iii) solve to 1 d.p. : sin(θ)/cos(θ) + cos(θ)/sin(θ) = 3.


How do you differentiate by first principles?


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning