Calculate the integral of ln(x)

Calculating the integral of ln(x) is harder than it might look and must be done using integration by parts, where the two parts are 1 and ln(x). The integration by parts formula is as follows
integral{udv) = uv - integral{vdu},
where ln(x) is u and 1 is dv. Next, du and v need to be calculated and these are 1/x and x respectively. Following this, plug u, du and v into the formula and you will get xln(x) - integral{x * 1/x}. Calculating this final integral will give you integral{ln(x)} = xln(x) - x + C , where C is a constant. 

CR
Answered by Callum R. Maths tutor

2781 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)


How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.


Given that y={(x^2+4)(x−3)}/2x, find dy/dx in its simplest form.


Differentiate y=x(e^x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences