Calculate the integral of ln(x)

Calculating the integral of ln(x) is harder than it might look and must be done using integration by parts, where the two parts are 1 and ln(x). The integration by parts formula is as follows
integral{udv) = uv - integral{vdu},
where ln(x) is u and 1 is dv. Next, du and v need to be calculated and these are 1/x and x respectively. Following this, plug u, du and v into the formula and you will get xln(x) - integral{x * 1/x}. Calculating this final integral will give you integral{ln(x)} = xln(x) - x + C , where C is a constant. 

CR
Answered by Callum R. Maths tutor

2584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find the stationary point of y= x^2-108x^(1/2)+16 and determine the nature of the stationary point?


Find the gradient at x=1 for the curve y=2x*e^2x


how to find flight time/distance and greatest hight of projectiles?


Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences