Calculate the integral of ln(x)

Calculating the integral of ln(x) is harder than it might look and must be done using integration by parts, where the two parts are 1 and ln(x). The integration by parts formula is as follows
integral{udv) = uv - integral{vdu},
where ln(x) is u and 1 is dv. Next, du and v need to be calculated and these are 1/x and x respectively. Following this, plug u, du and v into the formula and you will get xln(x) - integral{x * 1/x}. Calculating this final integral will give you integral{ln(x)} = xln(x) - x + C , where C is a constant. 

CR
Answered by Callum R. Maths tutor

3213 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


How do you integrate the natural logarithm?


Solve the differential equation: dy/dx = tan^3(x)sec^2(x)


what does it mean if "b^2 - 4ac < 0" for a quadratic equation (eg y = a*x^2 + b*x + c)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning