How do you solve a quadratic inequality?

  1. Treat it as a normal quadratic equation and solve by factorising: eg. x2 - 5x - 24 > 0 x2 - 5x - 24 = 0 (x + 3)(x - 8) = 0 x = -3 or x = 82) Sketch the curve, showing the points where the curve crosses the x-axis.3) If the sign in the inequality were to be <, the region that satisfies the inequality would be the region in between these two values (the "inside" region).But in this example, as the sign is >, the regions outside this range (the "outside" region) is the valid region.Therefore, the answer to this example question is x < -3, x > 8.As these are two different regions, we write them as two separate inequalities.4) If the question asks to shade in the valid region of the graph, we would shade in the area to the left of x = -3 and the area to the right of x = 8.
AA
Answered by Abeda A. Maths tutor

3615 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify Fully: (b^6 x b^2) / b^4


The mean mass of a squad of 19 hockey players is 82 kg A player of mass 93 kg joins the squad. Work out the mean mass of the squad now.


The perimeter of a right-angled triangle is 60cm. The lengths of its sides are in the ratio 3:4:5. Work out the area of the triangle.


Factorise and solve x^2 - 8x + 15 = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning