How do you solve a quadratic inequality?

  1. Treat it as a normal quadratic equation and solve by factorising: eg. x2 - 5x - 24 > 0 x2 - 5x - 24 = 0 (x + 3)(x - 8) = 0 x = -3 or x = 82) Sketch the curve, showing the points where the curve crosses the x-axis.3) If the sign in the inequality were to be <, the region that satisfies the inequality would be the region in between these two values (the "inside" region).But in this example, as the sign is >, the regions outside this range (the "outside" region) is the valid region.Therefore, the answer to this example question is x < -3, x > 8.As these are two different regions, we write them as two separate inequalities.4) If the question asks to shade in the valid region of the graph, we would shade in the area to the left of x = -3 and the area to the right of x = 8.
AA
Answered by Abeda A. Maths tutor

3165 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jo wants to work out the solutions of x^2 + 3x – 5 = 0 She says, ‘‘The solutions cannot be worked out because x^2 + 3x – 5 does not factorise to (x + a)(x + b) where a and b are integers.’’ Is Jo correct?


3n+2 <= 14 and 6n/(n^2+5) > 1 Find possible values of N


Expand and simplify (x+2)(x+3)


The equation of line A is (x)^2 + 11x + 12 = y - 4, while the equation of line B is x - 6 = y + 2. Find the co-ordinate(s) of the point at which lines A and B intersect.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences