How do I differentiate (x^2 + 3x + 3)/(x+3)

In order to differentiate this fraction, you will need to use the quotient rule, which if you don't remember is:
y = u/v then dy/dx = (vdu/dx − u dv/dx)/ v^2)
First you need to identify your initial variables:
u = x^2 + 3x + 3
v = x+3
Then you need to differentiate these initial variables, which is done by multiplying the coefficient of each term by the number of the power and then subtracting one off of the power:
du/dx = 2x + 3dv/dx = 1
Remember that for number terms, the real term is 3
x^0. This means that when you multiply by the power, entire term is turned to 0.
Now that you have your variables, all you have to do is substitute them into the formula:
dy/dx = (((x+3)
(2x+3)) - ((x^2 + 3x + 3)*1))/(x + 3)^2
After you expand the brackets, this becomes
dy/dx = (2x^2 +6x + 3x + 9 - x^2 - 3x - 3)/(x+3)^2
dy/dx = (x^2 + 6x + 6)/(x+3)^2

This is the simplest form, therefore we have the answer!

Answered by Maths tutor

4009 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.


How do you factorise a quadratic equation?


How do I write the function 3cosθ+4sinθ in the form Rsin(θ + α), where R and α are positive constants?


How do I find the maximum/minimum of a function?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning