Given that the graph f(x) passes through the point (2,3) and that f'(x)=6x^2-14x+3, find f(x).

For this question we already have the derivative of f(x), and so if we integrate it we should get to a general equation with a constant on the end, however we want to get to an exact solution which we should be able to get to by plugging the point into f(x). So it f'(x) = 6x2-14x+3 then f(x) = 6x3/3 - 14x2/2 + 3x/1 + C = 2x3 - 7x2 + 3x + C. So now we have to plug x =2 and f(x) = 3 into this and get 3 = 2 x 8 - 7 x 4 +3 x 2 + C => C = 9. Therefore f(x) = 2x3 - 7x2 + 3x + 9

Answered by Maths tutor

4432 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=cos(2x)to find ∫(cos(2x))^2 (sin(2x))^3dx


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


What is the integral of x^2 + 3x + 7?


Integrate the following function: f(x) = ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences