Given that the graph f(x) passes through the point (2,3) and that f'(x)=6x^2-14x+3, find f(x).

For this question we already have the derivative of f(x), and so if we integrate it we should get to a general equation with a constant on the end, however we want to get to an exact solution which we should be able to get to by plugging the point into f(x). So it f'(x) = 6x2-14x+3 then f(x) = 6x3/3 - 14x2/2 + 3x/1 + C = 2x3 - 7x2 + 3x + C. So now we have to plug x =2 and f(x) = 3 into this and get 3 = 2 x 8 - 7 x 4 +3 x 2 + C => C = 9. Therefore f(x) = 2x3 - 7x2 + 3x + 9

Answered by Maths tutor

5006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is (5+3i)*(3+5i)


You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


Factorise completely x − 4 x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning