Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.

Substitution of 'u=1+sin(x)' is required.Differentiating this with respect to x gives cos(x)... therefore du=1/cos(x) dxmultiplying that through leaves the integral of sin(x)(1+sin(x))^3 which therefore can be replaced using the substitution of u=1+sin(x) to give the integral of (u-1)u^3 with respect to 'u' since sin(x) is equal to 'u-1.'Expanding this gives the simple integral of u^4 - u^3.Evaluating gives u^5/5 - u^4/4 +C.Replacing back with the initial substitution gives the answer as (1 +sin(x))^5/5 - (1+sin(x))^4/4 +C

Answered by Maths tutor

4943 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


Differentiate x^2 + xy + y^2 =1 implicitly.


given that at a time t, a particle is accelerating in the positive x-direction at 1/t ms^-2, calculate the velocity and the displacement of the particle at time t = 2s


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning