Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.

Substitution of 'u=1+sin(x)' is required.Differentiating this with respect to x gives cos(x)... therefore du=1/cos(x) dxmultiplying that through leaves the integral of sin(x)(1+sin(x))^3 which therefore can be replaced using the substitution of u=1+sin(x) to give the integral of (u-1)u^3 with respect to 'u' since sin(x) is equal to 'u-1.'Expanding this gives the simple integral of u^4 - u^3.Evaluating gives u^5/5 - u^4/4 +C.Replacing back with the initial substitution gives the answer as (1 +sin(x))^5/5 - (1+sin(x))^4/4 +C

Answered by Maths tutor

5265 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point P (4, –1) lies on the curve C with equation y = f( x ), x > 0, and f '(x) =x/2 - 6/√x + 3. Find the equation of the tangent to C at the point P , giving your answer in the form y = mx + c. Find f(x)


Find the derivative of A^4 + 2A^2 - 3A + 4


Find the exact solution to ln(2y+5) = 2 + ln(4-y)


A ball is released on a smooth ramp at a distance of 5 metres from the ground. Calculate its speed when it reaches the bottom of the ramp.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning