Prove the identity (sin2x)/(1+(tanx)^2) = 2sinx(cosx)^3

For a proof like this, I like to start with the more difficult-looking side, and aim to end up with the expression on the other side. Starting with the left hand side, the first thing to change is the sin2x, because the expression on the RHS only has terms of x, not 2x.Using the identity sin2x = 2sinxcosx, the expression becomes 2sinxcosx/(1 + (tan2x)).Next, we will change the tan2x to (sinx/cosx)2. This will give a fraction on the demoninator, which we will want to get rid of, so the next step is to multiply top and bottom of the expression by cos2x.This will give us 2sinxcosx.cos2x/cos2x+sin2x. Using the identity cos2x +sin2x = 1, and tidying up the numerator, we get to the required result of 2sinx(cos3x).

AC
Answered by Alice C. Maths tutor

8924 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180


Given that 2cos(x+50)°=sin(x+40)° show tan x° = tan 40°/3


Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning