f(x) = x^2 + 2x - 3. Where does the graph of the function f intersect the x-axis?

First, let's use the discriminant to check that the function actually does intersect the x-axis. b2-4ac = 4-(4 x -3) = 4+12 = 16, which is greater than 0, so we're fine.
The function intersects the x-axis whenever f(x) = 0, so we need to solve the equation "x2 + 2x - 3 = 0" for x.
There are two methods we could use. First we could factorise the equation: x2 + 2x - 3 = (x-1)(x+3) = 0, so x = 1 or -3
Or we could use the quadratic equation: x = (-b ± sqrt(b2-4ac)) / 2a = (-2 ± sqrt(16))/2 = (-2 ± 4) /2 = -1 ± 2 = 1 or -3
So either way, we get the same answer: x = 1 or -3.
You can try checking that this answer is correct by substituting "1" or "-3" for "x" in the equation x2 + 2x - 3 and making sure that you get "0"

GM
Answered by George M. Maths tutor

3322 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Anne picks a 4-digit number. The first digit is not zero. The 4-digit number is a multiple of 5. How many different 4-digit numbers could she pick?


10 The table gives information about the heights of 50 trees. Height (h metres) Frequency 0 < h - 4 ,8, 4 < h - 8 ,21, 8 < h - 12, 12, 12 < h - 16, 7, 16 < h - 20, 2. Work out an estimate for the mean height of the trees.


Expand (1+2x)(4x+3)


Solve the simultaneous equation 6x + 2y = -3, 4x - 3y =11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning