The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a

Perpendicular gradients multiply to give -1. The gradient of the perpendicular line (y=-3/2x+7/2) is -3/2 , so the gradient of PQ is 2/3. Using gradient formula change in y/ change in x :(4-b)/(3-a) = 2/3 Simplifying:4-b=(6-2a)/3 12-3b=6-2a 3b=6+2a In terms of b: b=2+2/3a

LD
Answered by Lizzie D. Maths tutor

3196 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A is the point with coordinates (5, 9) B is the point with coordinates (d, 15) The gradient of the line AB is 3 Work out the value of d.


When using trigonometry to calculate side lengths/angles, how do you know which identity to use?


Simplify the expression: 3x + 2y -7x + c + y


Make x the subject of the formula: 3x - 2 = y + 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning