Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).

Initially we find the first derivative of the function y = x6 + sqrt(x). We achieve this by multiplying each x term by the power it is raised to, then reducing the power by 1. Solution:
1) It helps to initially simplify the sqrt(x) term to x1/2 to give: y = x6 + x1/2
2) We can then determine the first derivative: dy/dx = 6x5+ 1/2x-1/2
To determine the second derivative we then take the first derivative and differentiate that function, repeating the prior steps:
3) d2y/dx2 = 30x4 + (-1/4)x-3/2
We can simplify the answer to give:
4) d2y/dx2 = 30
x4 -1/4
x-3/2
Simplifying fully gives:
5) d2y/dx2 = 30x4 - (1/(4x3/2))

Answered by Maths tutor

3423 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function y=(x+1)(x-2)^2 find i) dy/dx ii) Stationary points and determine their nature


Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


Can you help me understand how Arithmetic sequences work?


At x=3, is the polynomial y= (4/3)x^3 -6x^2 + 11 at a maxima or minima?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning