Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).

Initially we find the first derivative of the function y = x6 + sqrt(x). We achieve this by multiplying each x term by the power it is raised to, then reducing the power by 1. Solution:
1) It helps to initially simplify the sqrt(x) term to x1/2 to give: y = x6 + x1/2
2) We can then determine the first derivative: dy/dx = 6x5+ 1/2x-1/2
To determine the second derivative we then take the first derivative and differentiate that function, repeating the prior steps:
3) d2y/dx2 = 30x4 + (-1/4)x-3/2
We can simplify the answer to give:
4) d2y/dx2 = 30
x4 -1/4
x-3/2
Simplifying fully gives:
5) d2y/dx2 = 30x4 - (1/(4x3/2))

Answered by Maths tutor

3158 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate the following to find the equation for the gradient of the curve in terms of x and y: 3x^3 + 4x^2 + 5xy + 7y = 0


Differentiate this equation: xy^2 = sin(3x) + y/x


How would you show that a vector is normal to a plane in 3D space?


How do I differentiate a function of x and y with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences