A sphere has a surface area of 4m^2, radius r. Another sphere has radius 2r. Calculate the Volume of the second sphere in M^3.

The surface area of a sphere can be calculated using Area = 4 x Pi x r^2. Since we know the surface are of the first sphere is 4m^2, we can write: 4 = 4 x Pi x r^2. This simplifies to r^2 = 0.318. Taking the square root we find that r = 0.564m. The radius of the larger sphere is therefore 2 x 0.564 = 1.128m. Using the formula for the volume of a sphere: (4/3) x Pi x r^3, we can calculate the volume of the second sphere to be 6.018m^3

FW
Answered by Freddie W. Maths tutor

3196 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 2x + y = 7 and 3x - y = 8.


Factorise fully x^3 - 10x^2 + 16x


Solve the simultaneous equations for x and y: 2x - 3y + 4 = 0 , x - 2y + 1 = 0.


The line l is a tangent to the circle x^2 + y^2 = 40 at the point A. A is the point (2,6). The line l crosses the x-axis at the point P. Work out the area of the triangle OAP.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning