A sphere has a surface area of 4m^2, radius r. Another sphere has radius 2r. Calculate the Volume of the second sphere in M^3.

The surface area of a sphere can be calculated using Area = 4 x Pi x r^2. Since we know the surface are of the first sphere is 4m^2, we can write: 4 = 4 x Pi x r^2. This simplifies to r^2 = 0.318. Taking the square root we find that r = 0.564m. The radius of the larger sphere is therefore 2 x 0.564 = 1.128m. Using the formula for the volume of a sphere: (4/3) x Pi x r^3, we can calculate the volume of the second sphere to be 6.018m^3

FW
Answered by Freddie W. Maths tutor

3191 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Triangle PQR is a right angled triangle. PQ is the hypotenuse and is 5cm long and QR has length 3cm. What is the length of side PR? Show your working.


Write x^2+6x+14 in the form of (x+a)^2+b where a and b are constants to be determined.


How do I solve a quadratic equation?


Complete the square of the equation below.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning