Derive the formula for differentiation from first principles

For a curve of f(x) against x, we can take the general point (x, f(x)) on the curve. By moving horizontally along the x-axis a distance of h, we also have the point (x+h, f(x+h)) on the curve. The gradient of the straight line between these two points is equal to the change in f(x) divided by the change in x, which (using our pair of coordinate points) is (f(x+h)-f(x))/x+h-x. This can be simplified to (f(x+h)-f(x))/h.Therefore, in the limit as h tends to 0 and the second point approaches the first along the curve, the gradient of the line tends to f'(x). This means that f'(x)=limh->0(f(x+h)-f(x))/h.

NG
Answered by Nicola G. Maths tutor

4004 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why bother with learning calculus?


Mechanics 1: How do you calculate the magnitude of impulse exerted on a particle during a collision of two particles, given their masses and velocities.


The line L has equation y = 5 - 2x. (a) Show that the point P (3, -1) lies on L. (b) Find an equation of the line perpendicular to L that passes through P.


Find dy/dx where y= x^3(sin(x))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning