Derive the formula for differentiation from first principles

For a curve of f(x) against x, we can take the general point (x, f(x)) on the curve. By moving horizontally along the x-axis a distance of h, we also have the point (x+h, f(x+h)) on the curve. The gradient of the straight line between these two points is equal to the change in f(x) divided by the change in x, which (using our pair of coordinate points) is (f(x+h)-f(x))/x+h-x. This can be simplified to (f(x+h)-f(x))/h.Therefore, in the limit as h tends to 0 and the second point approaches the first along the curve, the gradient of the line tends to f'(x). This means that f'(x)=limh->0(f(x+h)-f(x))/h.

NG
Answered by Nicola G. Maths tutor

3645 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do changes to the coefficient of x affect the graph y = f(x) as opposed to changes to the coefficient of f(x)?


How to find and classify stationary points (maximum point, minimum point or turning points) of curve.


Find the values of k for which the equation (2k-3)x^2-kx+(k-1) has equal roots


Find the intergral of 2x^5 - 1/4x^3 - 5 with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning