Prove the Quotient Rule using the Product Rule and Chain Rule

given that the chain rule is d/dx(f(g(x))) = g'(x)f'(g(x))given that the product rule is d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)given that the quotient rule is d/dx(f(x)/g(x)) = (g(x)f'(x) - g'(x)f(x))/(g(x))2
LHS:d/dx(f(x)/g(x)) = d/dx(f(x)(g(x))-1)
let h(x) = (g(x))-1
by using the chain ruleh'(x) = -g'(x)(g(x))-2
therefor: LHS = d/dx(f(x)h(x))
by using the product ruleLHS = f'(x)h(x) + f(x)h'(x)
by substituting the values of h(x) and h'(x)LHS = f'(x)(g(x))-1 - f(x)g'(x)(g(x))-2
by rearranging and turning into a fraction with a denominator of (g(x))2LHS = (g(x)f'(x) - g'(x)f(x))/(g(x))2 = RHSas required

Answered by Maths tutor

3450 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


Calculate the gradient of the function y=x^2+6x when y=-9


A circle is given by the equation x^2+y^2-20x-24y+195=0. Draw this circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning