Prove the Quotient Rule using the Product Rule and Chain Rule

given that the chain rule is d/dx(f(g(x))) = g'(x)f'(g(x))given that the product rule is d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)given that the quotient rule is d/dx(f(x)/g(x)) = (g(x)f'(x) - g'(x)f(x))/(g(x))2
LHS:d/dx(f(x)/g(x)) = d/dx(f(x)(g(x))-1)
let h(x) = (g(x))-1
by using the chain ruleh'(x) = -g'(x)(g(x))-2
therefor: LHS = d/dx(f(x)h(x))
by using the product ruleLHS = f'(x)h(x) + f(x)h'(x)
by substituting the values of h(x) and h'(x)LHS = f'(x)(g(x))-1 - f(x)g'(x)(g(x))-2
by rearranging and turning into a fraction with a denominator of (g(x))2LHS = (g(x)f'(x) - g'(x)f(x))/(g(x))2 = RHSas required

Answered by Maths tutor

3353 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.


By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


If n is an integer prove (n+3)^(2)-n^(2) is never even.


Why do we get cos(x) when we differentiate sin(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning