Find all of the roots of the equation y = 3x^3 - 12x

Step 1: Remove the most obvious factor, in this case 3x. y = 3x (x2 - 4) Step 2: Realize (x2 - 4) is the product of two squares and can undergo completing the square to produce two factors. y = 3x (x-2) (x+2) Step 3: Set each factor to equal 0 then rearrange to find the x value, as when the curve crosses the x-axis the value for the y component will be 0 and therefore at each root one of the factors will be equal to 0. 3x = 0, so x = 0. x-2 = 0, so x = 2. x+2 = 0, so x = -2. Therefore the roots are at (-2,0), (0,0) and (2,0)

VD
Answered by Victoria D. Maths tutor

3749 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the x-Coordinate of the minimum point of the function: f(x) = x^2 + 2x - 5


The equation of a straight line is 3x + 2y = 24. Find where the line crosses the x-axis.


Factorise X^2-X-20


Solve x^2 = 4(x - 3)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning