Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.

To answer this question, m and n should be whole numbers instead of fractions, without any square root terms in them. To do this, we first find the numerator, p+q, and the denominator, p-q, individually.Numerator:p + q = 3 - 2√2 + 2 - √2 = 5 - 3√2Denominator:p - q = 3 - 2√2 -(2 - √2) = 3 - 2√2 - 2 + √2 = 1 -√2Putting the two together, this means that the fraction we need to calculate is (5 - 3√2)/(1 - √2). To rationalise just the denominator, (1 - √2), we multiply it by (1 + √2). When we do this, the square root terms will cancel out and we will be left with a whole number to divide the numerator by. In order to keep the value of the fraction the same, we also need to multiply the numerator, (5 - 3√2), by the same expression, (1 + √2).Numerator:(5 - 3√2) x (1 + √2) = 5 + 5√2 - 3√2 - (3√2 x √2) = 5 + 2√2 -6 = -1 + 2√2Denominator:(1 - √2) x (1 + √2) = 1 + √2 - √2 - (√2 x √2) = 1 - 2 = -1Putting the fraction back together gives us (-1 + 2√2)/(-1).Since the denominator in this case is -1, we need to divide each term in the numerator by -1. This gives us the answer in the correct format: 1 - 2√2, where m = 1 and n = 2.

EF
Answered by Elizabeth F. Maths tutor

7369 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate 2 to the power x?


If (x+1) is a factor of 2x^3+21x^2+54x+35, fully factorise 2x^3+21x^2+54x+35


integrate 1/((1-x^2)^0.5) between 0 and 1


Two masses A and B, 2kg and 4kg respectively, are connected by a light inextensible string and passed over a smooth pulley. The system is held at rest, then released. Find the acceleration of the system and hence, find the tension in the string.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning