Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.

To answer this question, m and n should be whole numbers instead of fractions, without any square root terms in them. To do this, we first find the numerator, p+q, and the denominator, p-q, individually.Numerator:p + q = 3 - 2√2 + 2 - √2 = 5 - 3√2Denominator:p - q = 3 - 2√2 -(2 - √2) = 3 - 2√2 - 2 + √2 = 1 -√2Putting the two together, this means that the fraction we need to calculate is (5 - 3√2)/(1 - √2). To rationalise just the denominator, (1 - √2), we multiply it by (1 + √2). When we do this, the square root terms will cancel out and we will be left with a whole number to divide the numerator by. In order to keep the value of the fraction the same, we also need to multiply the numerator, (5 - 3√2), by the same expression, (1 + √2).Numerator:(5 - 3√2) x (1 + √2) = 5 + 5√2 - 3√2 - (3√2 x √2) = 5 + 2√2 -6 = -1 + 2√2Denominator:(1 - √2) x (1 + √2) = 1 + √2 - √2 - (√2 x √2) = 1 - 2 = -1Putting the fraction back together gives us (-1 + 2√2)/(-1).Since the denominator in this case is -1, we need to divide each term in the numerator by -1. This gives us the answer in the correct format: 1 - 2√2, where m = 1 and n = 2.

EF
Answered by Elizabeth F. Maths tutor

6980 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x^2e^x with respect to x between the limits of x=5 and x=0.


Integrate f(x)=lnx


A level Maths question - The graph of y=2sin(2x)+1 is rotated 360 degrees about the x-axis to form a solid. Find the volume enclosed by the curve, the co-ordinate axes and the line x=pi/2


A ball is projected at an angle b from the horizontal. With initial velocity V the ball leaves the ground at point O and hits the ground at point A. If Vcos(b) = 6u and Vsin(b) = 2.5u, how long does the ball take to travel between O and A.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences