Express the fraction (p+q)/(p-q) in the form m+n√2, where p=3-2√2 and q=2-√2.

To answer this question, m and n should be whole numbers instead of fractions, without any square root terms in them. To do this, we first find the numerator, p+q, and the denominator, p-q, individually.Numerator:p + q = 3 - 2√2 + 2 - √2 = 5 - 3√2Denominator:p - q = 3 - 2√2 -(2 - √2) = 3 - 2√2 - 2 + √2 = 1 -√2Putting the two together, this means that the fraction we need to calculate is (5 - 3√2)/(1 - √2). To rationalise just the denominator, (1 - √2), we multiply it by (1 + √2). When we do this, the square root terms will cancel out and we will be left with a whole number to divide the numerator by. In order to keep the value of the fraction the same, we also need to multiply the numerator, (5 - 3√2), by the same expression, (1 + √2).Numerator:(5 - 3√2) x (1 + √2) = 5 + 5√2 - 3√2 - (3√2 x √2) = 5 + 2√2 -6 = -1 + 2√2Denominator:(1 - √2) x (1 + √2) = 1 + √2 - √2 - (√2 x √2) = 1 - 2 = -1Putting the fraction back together gives us (-1 + 2√2)/(-1).Since the denominator in this case is -1, we need to divide each term in the numerator by -1. This gives us the answer in the correct format: 1 - 2√2, where m = 1 and n = 2.

EF
Answered by Elizabeth F. Maths tutor

7939 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that: [sin(2a)] / [1+cos(2a)] = tan(a)


Solve D/dx (ln ( 1/cos(x) + tan (x) )


A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


What is the derivative of x^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning