Describe the features of a benzene ring that define its reactivity. How does phenol differ from this?

The six carbon atoms in benzene are arranged in a planar ring, with one hydrogen atom bonded to each carbon. Each carbon atom has 4 valence electrons, and uses three of them to form single bonds with the two adjacent carbon atoms and one hydrogen atom. The remaining electron exists in a p orbital which is perpendicular to the plane of the molecule. The six singly-occupied carbon p orbitals in the benzene ring overlap sideways above and below the plane of the molecule, producing a pi ring of six delocalised electrons. The delocalised electrons make benzene more reactive than if it had three localised double bonds instead. Phenol has a similar structure to benzene, with an -OH hydroxyl group on to one of the carbons in the ring instead of a hydrogen atom. The oxygen atom has six valence electrons, and uses two of them to form two single bonds (one to a hydrogen and one to a carbon), so it has two lone pairs of electrons. One of these lone pairs is added into the delocalised benzene ring, so that it becomes a 'lollipop' shape.

EF
Answered by Elizabeth F. Chemistry tutor

4558 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do you make a buffer?


what is the shape and bond angle of NH3 and use VSEPR theory to explain the bond angle.


How does electrophilic aromatic substitution occur?


Explain why first ionisation energy decreases down a group.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences