Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2

By definition, turning points occur when the gradient function equals to zero. To prove this we need to differentiate the function given. To differentiate, bring the power down and multiply it by the co-efficient. When we do this we get dy/dx = 12x^3 - 24x^2. Subbing in the value x=2 into this function we get dy/dx = 0. It is important to write a concluding statement with 'prove that' questions. You should write something like ' As the gradient function equals zero at x=2, a turning point must occur here as the gradient is zero' in order to obtain full marks.

Answered by Maths tutor

3324 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has an equation of y = 20x - x^2 - 2x^3, with one stationary point at P=-2. Find the other stationary point, find the d^2y/dx^2 to determine if point P is a maximum or minium.


A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


For a curve of equation 2ye^-3x -x = 4, find dy/dx


Find the intergal of 2x^5 -1/(4x^3) -5 giving each term in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning