Find the solution of the differential equation: dy/dx = (xy^2 + x)/y. There is no need to rearrange the solution to be in terms of y.

This is a separable differential equation, so the first step is to separate the two variables. Factorise out the x from the top bracket so that the equation becomes: dy/dx = x(y^2+1)/yThe next step is to multiply the dx to the right hand side, and move the (y^2+1)/y to the left hand side, making it now look like: y/(y^2+1) dy = x dxFrom there, all that has to be done is to integrate both sides, the left hand side on closer inspection is of the form f’(y)/f(y), with a factor of 2 missing, so it becomes 1/2 log(y^2+1) while the right hand side is a straightforward integral and becomes 1/2 x^2. Putting all of this together and not forgetting the constant of integration, the overall solution is:log(y^2+1) = x^2 + c (Both sides have been multiplied by 2)

TS
Answered by Thomas S. Maths tutor

3097 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


How do I find the maxima and minima of a function?


The curve C has parametric equations x=2cos(t) and y=3cos(2t). Find and expression for dy/dx in terms of t.


What are the roots of 3x^2 + 13x + 4 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences