Find the integral of ln(x)

The best way to approach this question is to solve it using integration by parts.First, recognise that ln(x) = 1 x ln(x), and set du/dx = 1 and v = ln(x). We then find that u = x, and dv/dx = 1/x.With this we can easily see, using our rules of integration by parts, that the Integral(lnx) = xln(x) - Integral(x/x) = xln(x) - Integral(1) = xlnx - x (+ some constant).I really like this question because while it seems hard to get started, once you notice that ln(x) = 1 x ln(x), it becomes a simple Integration by Parts problem!

FG
Answered by Finn G. Maths tutor

3133 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 9^(3x+)1 in the form 3^y giving y in the form of ax+b where a and b are constants.


Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11


Integrate this funtion f'(x)=2x +4 with respect to x (C1 integration)


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences