Find the integral of ln(x)

The best way to approach this question is to solve it using integration by parts.First, recognise that ln(x) = 1 x ln(x), and set du/dx = 1 and v = ln(x). We then find that u = x, and dv/dx = 1/x.With this we can easily see, using our rules of integration by parts, that the Integral(lnx) = xln(x) - Integral(x/x) = xln(x) - Integral(1) = xlnx - x (+ some constant).I really like this question because while it seems hard to get started, once you notice that ln(x) = 1 x ln(x), it becomes a simple Integration by Parts problem!

FG
Answered by Finn G. Maths tutor

3250 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If (m+8)(x^2)+m=7-8x has two real roots show that (m+9)(m-8)<0 where m is an arbitrary constant


Differentiate y=3xe^{3x^2}+2x


Why do I have to add +c when I integrate?


The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences