Prove by contradiction that there is an infinite number of prime numbers.

The 'by contradiction' tells us we need to assume the opposite to begin with: 1) Let's assume there is a finite number of prime numbers2) Let P be the largest prime number (the last one) 3) if we multiply all the prime numbers up to and including P: 2x3x5x7...xP=q (the multiple of all prime number up to and including P)4) consider q+1 5) Will it be divisible by any prime P or less? no, as q is divisible by those and q+1 is only 1 more.6) So this means that either q+1 is Prime, or it has a prime factor larger than P.7) But P is the largest prime factor - this is a contradiction as there must exist a prime larger than PHence there is an infinite number of prime numbers

CL
Answered by Charlotte L. Maths tutor

16785 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the centre C and the length of the diameter of a circle with the equation (x-2)^2 + (y+5)^2 = 25


What does it mean when I get a negative value when I do a definite integral?


Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


Given that x = ln(sec(2y)) find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences